
Hosing WordPress on Lightsail Debian

Linux with Nginx - PHP8 – MaraiaDB -

Cloudflare

Contents
Hosing WordPress on Lightsail Debian Linux with Nginx - PHP8 – MaraiaDB - Cloudflare 1

Step 1: Initial Lightsail instance with Debian .. 2

Step 2: SSH to Lightsail instance ... 3

Step 3: Installing the Nginx Web Server ... 4

Step 4: Installing PHP .. 4

Step 5: Configuring Nginx.. 11

Manage Nginx: .. 15

Step 6: Install MariaDB.. 15

Creating a Database and User for WordPress .. 16

Step 7: Uploading WordPress ... 16

Uploading site files : .. 16

Setting up site files on the web server:... 17

Importing Database .. 17

Step 8: Setting up the WordPress Configuration File ... 17

Update the domain: siteurl and home: .. 20

Step 9: Secure Nginx with Let's Encrypt .. 20

Step 1 — Installing Certbot ... 20

Step 2 — Confirming Nginx’s Configuration ... 20

Step 3— Verifying Certbot Auto-Renewal .. 21

Step 10: How To Implement Browser Caching with Nginx's header Module 22

Creating Test Files ... 22

Checking the Default Behavior.. 22

Configuring Cache-Control and Expires Headers .. 24

Testing Browser Caching ... 26

Step 11: Nginx Logs: .. 28

Step 12: Enabling Nginx mod_rewrite Nginx does not support .htaccess files. 28

Step 13: Optimize Nginx .. 28

Step 14: Setup Cloudflare ... 29

References: ... 29

Powered By: .. 30

Step 1: Initial Lightsail instance with Debian
In your AWS account, Lightsail Service: create new instance

Choose your location and Linux OS only

Pick up Debian:

Chose instance plan:

Change the instance Networking firewall to have http and https access for IP4 and IP6

Step 2: SSH to Lightsail instance
Personally I use MobaXterm for SSH connection to server:

add the instance IP address and the default username(admin for Debian) and the pem key file in

new session MobaXterm to connect to the server:

https://mobaxterm.mobatek.net/

Step 3: Installing the Nginx Web Server
In order to serve web pages to your site visitors, we are going to employ Nginx, a popular web

server which is well known for its overall performance and stability.

All of the software you will be using for this procedure will come directly from Debian’s default

package repositories. This means you can use the apt package management suite to complete the

installation.

Since this is the first time you’ll be using apt for this session, you should start off by updating your

local package index. You can then install the server:

sudo apt update

sudo apt install nginx

On Debian, Nginx is configured to start running upon installation.

Step 4: Installing PHP

Step 1: Update Debian System

We recommend you perform any installation on an upgraded Debian system. Run the commands

provided to upgrade all packages and minor release of your Debian system.

sudo apt update

sudo apt -y upgrade

https://www.nginx.com/

OS release can be checked with the command below:

$ cat /etc/os-release

PRETTY_NAME="Debian GNU/Linux 11 (bullseye)"

NAME="Debian GNU/Linux"

VERSION_ID="11"

VERSION="11 (bullseye)"

VERSION_CODENAME=bullseye

ID=debian

HOME_URL="https://www.debian.org/"

SUPPORT_URL="https://www.debian.org/support"

BUG_REPORT_URL="https://bugs.debian.org/"

If your kernel was upgraded you can reboot the system to start using it.

sudo reboot

Step 2: Add Sury APT repository to Debian

The DEB.SURY.ORG repository is a home for packaging various software into Debian and Ubuntu

based Linux distributions. It contains the latest binary builds of PHP 8.1. The repository has to be

added manually on the system.

Install required temporary packages:

sudo apt update

sudo apt install -y lsb-release ca-certificates apt-transport-https software-properties-common gnupg2

Add Sury Debian PPA repository to your Debian system.

echo "deb https://packages.sury.org/php/ $(lsb_release -sc) main" | sudo tee

/etc/apt/sources.list.d/sury-php.list

Import packages signing GPG key:

curl -fsSL https://packages.sury.org/php/apt.gpg| sudo gpg --dearmor -o

/etc/apt/trusted.gpg.d/sury-keyring.gpg

Confirm if the repository is working by downloading package information from all configured

sources:

https://deb.sury.org/

$ sudo apt update

Hit:1 http://security.debian.org/debian-security bullseye-security InRelease

Hit:2 http://deb.debian.org/debian bullseye InRelease

Hit:3 http://deb.debian.org/debian bullseye-updates InRelease

Hit:4 http://deb.debian.org/debian bullseye-backports InRelease

Hit:5 https://packages.sury.org/php bullseye InRelease

Reading package lists... Done

Building dependency tree... Done

Reading state information... Done

All packages are up to date.

Step 3: Install PHP 8.1 on Debian

Without Apache2:

sudo apt install --no-install-recommends php8.1

The --no-install-recommends flag will ensure that other packages like the Apache web server

are not installed.

With Apache2

Once you’ve added the repository and is confirmed to be functional, we can proceed with the

installation of PHP 8.1 o Debian

sudo apt update

sudo apt install php8.1

All dependency packages are installed automatically for you. Just hit y in your keyboard to proceed:

....

Reading state information... Done

The following additional packages will be installed:

 apache2 apache2-bin apache2-data apache2-utils bzip2 libapache2-mod-php8.1 libapr1 libaprutil1

libaprutil1-dbd-sqlite3 libaprutil1-ldap libgdbm-compat4 libjansson4 liblua5.3-0 libperl5.32

 libsodium23 mailcap mime-support perl perl-modules-5.32 php-common php8.1-cli php8.1-

common php8.1-opcache php8.1-readline ssl-cert

Suggested packages:

 apache2-doc apache2-suexec-pristine | apache2-suexec-custom www-browser bzip2-doc php-pear

perl-doc libterm-readline-gnu-perl | libterm-readline-perl-perl make libtap-harness-archive-perl

The following NEW packages will be installed:

 apache2 apache2-bin apache2-data apache2-utils bzip2 libapache2-mod-php8.1 libapr1 libaprutil1

libaprutil1-dbd-sqlite3 libaprutil1-ldap libgdbm-compat4 libjansson4 liblua5.3-0 libperl5.32

 libsodium23 mailcap mime-support perl perl-modules-5.32 php-common php8.1 php8.1-cli php8.1-

common php8.1-opcache php8.1-readline ssl-cert

0 upgraded, 26 newly installed, 0 to remove and 0 not upgraded.

Need to get 14.3 MB of archives.

After this operation, 77.2 MB of additional disk space will be used.

Do you want to continue? [Y/n] y

Installed version of PHP can be checked with the command below after a successful installation

$ php -v

PHP 8.1.9 (cli) (built: Aug 15 2022 09:47:52) (NTS)

Copyright (c) The PHP Group

Zend Engine v4.1.9, Copyright (c) Zend Technologies

 with Zend OPcache v8.1.9, Copyright (c), by Zend Technologies

Step 4: Install PHP 8.1 Extensions on Debian

PHP 8.1 modules can be installed as packages using below command syntax:

sudo apt install php8.1-<extension>

Where:

<extension> is replaced with the actual extension name.

Below is an example to install MySQL PHP extension:

$ sudo apt install php8.1-mysql

Reading package lists... Done

Building dependency tree... Done

Reading state information... Done

The following NEW packages will be installed:

 php8.1-mysql

0 upgraded, 1 newly installed, 0 to remove and 0 not upgraded.

Need to get 116 kB of archives.

After this operation, 466 kB of additional disk space will be used.

Get:1 https://packages.sury.org/php bullseye/main amd64 php8.1-mysql amd64 8.1.0~rc6-

3+0~20211120.8+debian11~1.gbp2227b0 [116 kB]

Fetched 116 kB in 0s (1152 kB/s)

Selecting previously unselected package php8.1-mysql.

(Reading database ... 37704 files and directories currently installed.)

Preparing to unpack .../php8.1-mysql_8.1.9-1+0~20220815.24+debian11~1.gbp4d5b5a_amd64.deb

...

Unpacking php8.1-mysql (8.1.9-1+0~20220815.24+debian11~1.gbp4d5b5a) ...

Setting up php8.1-mysql (8.1.9-1+0~20220815.24+debian11~1.gbp4d5b5a) ...

Creating config file /etc/php/8.1/mods-available/mysqlnd.ini with new version

Creating config file /etc/php/8.1/mods-available/mysqli.ini with new version

Creating config file /etc/php/8.1/mods-available/pdo_mysql.ini with new version

Processing triggers for libapache2-mod-php8.1 (8.1.9-1+0~20220815.24+debian11~1.gbp4d5b5a) ...

Processing triggers for php8.1-cli (8.1.9-1+0~20220815.24+debian11~1.gbp4d5b5a) ...

To install all commonly used PHP extensions run the following commands a user with sudo

privileges:

sudo apt install php8.1-

{bcmath,fpm,xml,mysql,zip,intl,ldap,gd,cli,bz2,curl,mbstring,pgsql,opcache,soap,cgi}

Continue with the installation:

....

uggested packages:

 libgd-tools php-pear

The following NEW packages will be installed:

 fontconfig-config fonts-dejavu-core libdeflate0 libfontconfig1 libgd3 libjbig0 libjpeg62-turbo

libonig5 libpq5 libtiff5 libwebp6 libx11-6 libx11-data libxau6 libxcb1 libxdmcp6 libxpm4 libxslt1.1

 libzip4 php8.1-bcmath php8.1-bz2 php8.1-cgi php8.1-curl php8.1-gd php8.1-intl php8.1-ldap

php8.1-mbstring php8.1-pgsql php8.1-soap php8.1-xml php8.1-zip

0 upgraded, 31 newly installed, 0 to remove and 0 not upgraded.

Need to get 7150 kB of archives.

After this operation, 26.5 MB of additional disk space will be used.

Do you want to continue? [Y/n] y

Check loaded PHP modules using the command:
$ php --modules

[PHP Modules]

bcmath

bz2

calendar

Core

ctype

curl

date

dom

exif

FFI

fileinfo

filter

ftp

gd

gettext

hash

iconv

intl

json

ldap

libxml

mbstring

mysqli

mysqlnd

openssl

pcntl

pcre

PDO

pdo_mysql

That’s all we had to cover on how to install PHP 8.1 on Debian Linux system.

When you are finished installing the new extensions, you’ll need to restart the PHP-FPM process so

that the running PHP processor can leverage the newly installed features:

sudo systemctl restart php8.1-fpm.service

Step 5: Configuring Nginx
We’ll now make a few minor adjustments to our Nginx server block files. Based on the prerequisite

tutorials, you should have a configuration file for your site in the /etc/nginx/sites-

available/ directory configured to respond to your server’s domain name and protected by a

TLS/SSL certificate. We’ll use /etc/nginx/sites-available/your_domain as an example

here, but you should substitute the path to your configuration file where appropriate.

Note: It’s possible you are using the /etc/nginx/sites-available/default default

configuration (with /var/www/html as your web root). This is fine to use if you’re only

going to host one website on this server. If not, it’s best to split the necessary
configuration into logical chunks, one file per site example of DEFAULT SITE CONFIG

WORKING WITH PHP:

Default server configuration
server {
 listen 80 default_server;
 listen [::]:80 default_server;
 # SSL configuration
 #
 # listen 443 ssl default_server;
 # listen [::]:443 ssl default_server;
 #
 # Note: You should disable gzip for SSL traffic.
 # See: https://bugs.debian.org/773332
 #
 # Read up on ssl_ciphers to ensure a secure configuration.
 # See: https://bugs.debian.org/765782
 #
 # Self signed certs generated by the ssl-cert package
 # Don't use them in a production server!
 #
 # include snippets/snakeoil.conf;

 root /var/www/html;

 # Add index.php to the list if you are using PHP
 index index.html index.htm index.nginx-debian.html;
 server_name _;
 location / {
 # First attempt to serve request as file, then
 # as directory, then fall back to displaying a 404.
 try_files $uri $uri/ =404;
 }

 # pass PHP scripts to FastCGI server
 #
 #location ~ \.php$ {
 # include snippets/fastcgi-php.conf;
 #
 # # With php-fpm (or other unix sockets):
 # fastcgi_pass unix:/run/php/php7.4-fpm.sock;
 # # With php-cgi (or other tcp sockets):
 # fastcgi_pass 127.0.0.1:9000;
 #}

 # deny access to .htaccess files, if Apache's document root
 # concurs with nginx's one
 #
 #location ~ /\.ht {
 # deny all;
 #}
}

Additionally, we will use /var/www/your_domain as the root directory of our WordPress install.

You should use the web root specified in your own configuration.

Open your site’s Nginx configuration file with sudo privileges to begin:

sudo nano /etc/nginx/sites-available/your_domain

We need to add a few location directives within our main server block. After adding SSL

certificates your config may have two server blocks. If so, find the one that contains root

/var/www/your_domain and your other location directives and implement your changes

there.

Start by creating exact-matching location blocks for requests

to /favicon.ico and /robots.txt, both of which we do not want to log requests for.

We will use a regular expression location to match any requests for static files. We will again turn off

the logging for these requests and will mark them as highly cacheable since these are typically

expensive resources to serve. You can adjust this static files list to contain any other file extensions

your site may use:

server {

 . . .

 location = /favicon.ico { log_not_found off; access_log off; }

 location = /robots.txt { log_not_found off; access_log off; allow all; }

 location ~* \.(css|gif|ico|jpeg|jpg|js|png)$ {

 expires max;

 log_not_found off;

 }

 . . .

}

Inside of the existing location / block, we need to adjust the try_files list so that instead of

returning a 404 error as the default option, control is passed to the index.php file with the

request arguments.

This should look something like this:

server {

 . . .

 location / {

 #try_files $uri $uri/ =404;

 try_files $uri $uri/ /index.php$is_args$args;

 }

 . . .

}

When you are finished, save and close the file.

File config example :

server {
 listen 80;
 listen [::]:80;

 root /var/www/your_domain.com;
 index index.php index.html index.htm;

 server_name your_domain.com www. your_domain.com;

 location / {
 try_files $uri $uri/ =404;
 }

 location ~ \.php$ {
 include snippets/fastcgi-php.conf;
 fastcgi_pass unix:/var/run/php/php8.1-fpm.sock;
 }
}

Manage Nginx:
Now, we can check our configuration for syntax errors by typing:

sudo nginx -t

If no errors were reported, reload Nginx by typing:

sudo systemctl reload nginx

Step 6: Install MariaDB
The short version of this installation guide consists of these three steps:

Update your package index using apt

Install the mariadb-server package using apt. The package also pulls in related tools to interact

with MariaDB

Run the included mysql_secure_installation security script to restrict access to the server

sudo apt update

sudo apt install mariadb-server

sudo mysql_secure_installation

Creating a Database and User for WordPress

sudo mariadb

First, we can create a separate database that WordPress can control. You can name this whatever

you would like, but we will be using wordpress in this guide to keep it simple. You can create the

database for WordPress by typing:

CREATE DATABASE wordpress DEFAULT CHARACTER SET utf8 COLLATE utf8_unicode_ci;

Next, we are going to create a separate MariaDB user account that we will use exclusively to operate

on our new database. Creating one-function databases and accounts is a good idea from a

management and security standpoint. We will use the name wordpress_user in this guide. Feel

free to change this if you’d like.

The following command will create this account, set a password, and grant access to the database

we created. Remember to choose a strong password for your database user:

GRANT ALL ON wordpress.* TO 'wordpress_user'@'localhost' IDENTIFIED BY 'password';

You now have a database and a user account, each made specifically for WordPress. We need to

flush the privileges so that the current instance of the database server knows about the recent

changes we’ve made:

FLUSH PRIVILEGES;

Exit out of MariaDB by typing:

EXIT;

Step 7: Uploading WordPress

Uploading site files :
Assume you developed WordPress website locally in your machine

now will upload the website files and db to the server:

1. zip to the WordPress files to one zip file then upload it to /tmp in the server using

MobaXterm

2. export the db from your localhost as sql file

Setting up site files on the web server:
Now in the server :

1. unzip the WordPress file, update the wp_config.php file with the correct db username and

password

2. Now, we can copy the entire contents of the directory into our document root. We are using

the -a flag to make sure our permissions are maintained. We are using a dot at the end of

our source directory to indicate that everything within the directory should be copied,

including any hidden files:

sudo cp -a /tmp/wordpress/. /var/www/your_domain

3. Now that our files are in place, we’ll assign ownership them to the www-data user and

group. This is the user and group that Nginx runs as, and Nginx will need to be able to read

and write WordPress files in order to serve the website and perform automatic updates.

sudo chown -R www-data:www-data /var/www/your_domain

Our files are now in our server’s document root and have the correct ownership, but we still need to

complete some more configuration.

Importing Database
Import the db from the exported database sql file to the server MariaDB database: To import an

existing dump file into MySQL or MariaDB, you will have to create a new database. This database will

hold the imported data:

mysql -u username -p new_database < data-dump.sql

• username is the username you can log in to the database with

• newdatabase is the name of the freshly created database

• data-dump.sql is the data dump file to be imported, located in the current directory

If the command runs successfully, it won’t produce any output. If any errors occur during the

process, mysql will print them to the terminal instead. To check if the import was successful, log in

to the MySQL shell and inspect the data. Selecting the new database with USE new_database and

then use SHOW TABLES; or a similar command to look at some of the data.

Step 8: Setting up the WordPress Configuration File
Next, we need to make a few changes to the main WordPress configuration file.

When we open the file, our first order of business will be to adjust the secret keys to provide some

security for our installation. WordPress provides a secure generator for these values so that you do

not have to try to come up with good values on your own. These are only used internally, so it won’t

hurt usability to have complex, secure values here.

To grab secure values from the WordPress secret key generator, type:

curl -s https://api.wordpress.org/secret-key/1.1/salt/

You will get back unique values that look something like this:

Output

define('AUTH_KEY', '1jl/vqfs<XhdXoAPz9 DO NOT COPY THESE VALUES c_j{iwqD^<+c9.k<J@4H');

define('SECURE_AUTH_KEY', 'E2N-h2]Dcvp+aS/p7X DO NOT COPY THESE VALUES {Ka(f;rv?Pxf})CgLi-

3');

define('LOGGED_IN_KEY', 'W(50,{W^,OPB%PB<JF DO NOT COPY THESE VALUES

2;y&,2m%3]R6DUth[;88');

define('NONCE_KEY', 'll,4UC)7ua+8<!4VM+ DO NOT COPY THESE VALUES #`DXF+[$atzM7 o^-

C7g');

define('AUTH_SALT', 'koMrurzOA+|L_lG}kf DO NOT COPY THESE VALUES 07VC*Lj*lD&?3w!BT#-

');

define('SECURE_AUTH_SALT', 'p32*p,]z%LZ+pAu:VY DO NOT COPY THESE VALUES C-

?y+K0DK_+F|0h{!_xY');

define('LOGGED_IN_SALT', 'i^/G2W7!-1H2OQ+t$3 DO NOT COPY THESE VALUES t6**bRVFSD[Hi])-

qS`|');

define('NONCE_SALT', 'Q6]U:K?j4L%Z]}h^q7 DO NOT COPY THESE VALUES 1%

^qUswWgn+6&xqHN&%');

These are configuration lines that we can paste directly in our configuration file to set secure keys.

Copy the output you received now.

Now, open the WordPress configuration file:

nano /var/www/your_domain/wp-config.php

Find the section that contains the dummy values for those settings. It will look something like this:

. . .

define('AUTH_KEY', 'put your unique phrase here');

define('SECURE_AUTH_KEY', 'put your unique phrase here');

define('LOGGED_IN_KEY', 'put your unique phrase here');

define('NONCE_KEY', 'put your unique phrase here');

define('AUTH_SALT', 'put your unique phrase here');

define('SECURE_AUTH_SALT', 'put your unique phrase here');

define('LOGGED_IN_SALT', 'put your unique phrase here');

define('NONCE_SALT', 'put your unique phrase here');

. . .

Delete those lines and paste in the values you copied from the command line:

. . .

define('AUTH_KEY', 'VALUES COPIED FROM THE COMMAND LINE');

define('SECURE_AUTH_KEY', 'VALUES COPIED FROM THE COMMAND LINE');

define('LOGGED_IN_KEY', 'VALUES COPIED FROM THE COMMAND LINE');

define('NONCE_KEY', 'VALUES COPIED FROM THE COMMAND LINE');

define('AUTH_SALT', 'VALUES COPIED FROM THE COMMAND LINE');

define('SECURE_AUTH_SALT', 'VALUES COPIED FROM THE COMMAND LINE');

define('LOGGED_IN_SALT', 'VALUES COPIED FROM THE COMMAND LINE');

define('NONCE_SALT', 'VALUES COPIED FROM THE COMMAND LINE');

. . .

Next, we need to modify some of the database connection settings at the beginning of the file. You

need to adjust the database name, the database user, and the associated password that we

configured within MariaDB.

The other change we need to make is to set the method that WordPress should use to write to the

filesystem. Since we’ve given the web server permission to write where it needs to, we can explicitly

set the filesystem method to “direct”. Failure to set this with our current settings would result in

WordPress prompting for FTP credentials when we perform some actions. This setting can be added

below the database connection settings, or anywhere else in the file:

. . .
define('DB_NAME', 'wordpress');

/** MySQL database username */

define('DB_USER', 'wordpress_user');

/** MySQL database password */

define('DB_PASSWORD', 'password');

. . .

define('FS_METHOD', 'direct');

 Update the domain: siteurl and home:
UPDATE `wp_options` SET `option_value` = 'https://your-domain.com' WHERE

`wp_options`.`option_id` = 2;

UPDATE `wp_options` SET `option_value` = 'https://your-domain.com' WHERE

`wp_options`.`option_id` = 1;

Step 9: Secure Nginx with Let's Encrypt

Step 1 — Installing Certbot
The first step to using Let’s Encrypt to obtain an SSL certificate is to install the Certbot software on

your server.

Install Certbot and its Nginx plugin with apt:

sudo apt install certbot python3-certbot-nginx

Certbot is now ready to use, but in order for it to automatically configure SSL for Nginx, we need to

verify some of Nginx’s configuration.

Step 2 — Confirming Nginx’s Configuration

Certbot needs to be able to find the correct server block in your Nginx configuration for it to be

able to automatically configure SSL. Specifically, it does this by looking for a server_name directive

that matches the domain you request a certificate for.

If you followed the server block set up step in the Nginx installation tutorial, you should have a

server block for your domain at /etc/nginx/sites-available/example.com with

the server_name directive already set appropriately.

To check, open the configuration file for your domain using nano or your favorite text editor:

https://www.digitalocean.com/community/tutorials/how-to-install-nginx-on-debian-11#step-5-setting-up-server-blocks-optional

sudo nano /etc/nginx/sites-available/example.com

Find the existing server_name line. It should look like this:

...

server_name example.com www.example.com;

...

If it does, exit your editor and move on to the next step.

If it doesn’t, update it to match. Then save the file, quit your editor, and verify the syntax of your

configuration edits:

sudo nginx -t

If you get an error, reopen the server block file and check for any typos or missing characters. Once

your configuration file’s syntax is correct, reload Nginx to load the new configuration:

sudo systemctl reload nginx

Step 3— Verifying Certbot Auto-Renewal
Let’s Encrypt’s certificates are only valid for ninety days. This is to encourage users to automate their

certificate renewal process. The certbot package we installed takes care of this for us by adding a

systemd timer that will run twice a day and automatically renew any certificate that’s within thirty

days of expiration.

You can query the status of the timer with systemctl:

sudo systemctl status certbot.timer

Output

● certbot.timer - Run certbot twice daily

 Loaded: loaded (/lib/systemd/system/certbot.timer; enabled; vendor preset: enabled)

 Active: active (waiting) since Mon 2022-08-08 19:05:35 UTC; 11s ago

 Trigger: Tue 2022-08-09 07:22:51 UTC; 12h left

 Triggers: ● certbot.service

To test the renewal process, you can do a dry run with certbot:

sudo certbot renew --dry-run

If you see no errors, you’re all set. When necessary, Certbot will renew your certificates and reload

Nginx to pick up the changes. If the automated renewal process ever fails, Let’s Encrypt will send a

message to the email you specified, warning you when your certificate is about to expire.

Step 10: How To Implement Browser Caching with Nginx's header Module

 Creating Test Files

In this step, we will create several test files in the default Nginx directory. We’ll use
these files later to check Nginx’s default behavior and then to test that browser
caching is working.

To infer what kind of file is served over the network, Nginx does not analyze the file
contents; that would be prohibitively slow. Instead, it looks up the file extension to
determine the file’s MIME type, which denotes its purpose.

Because of this behavior, the content of our test files is irrelevant. By naming the
files appropriately, we can trick Nginx into thinking that, for example, one entirely
empty file is an image and another is a stylesheet.

Create a file named test.html in the default Nginx directory using truncate. This

extension denotes that it’s an HTML page:

sudo truncate -s 1k /var/www/html/test.html

Let’s create a few more test files in the same manner: one jpg image file,

one css stylesheet, and one js JavaScript file:

sudo truncate -s 1k /var/www/html/test.jpg
sudo truncate -s 1k /var/www/html/test.css
sudo truncate -s 1k /var/www/html/test.js

The next step is to check how Nginx behaves with respect to sending caching control
headers on a fresh installation with the files we have just created.

Checking the Default Behavior

By default, all files will have the same default caching behavior. To explore this, we’ll
use the HTML file we created in step 1, but you can run these tests with any
example files.

So, let’s check if test.html is served with any information regarding how long the

browser should cache the response. The following command requests a file from our
local Nginx server and shows the response headers:

curl -I http://localhost/test.html

You will see several HTTP response headers:

Output: Nginx response headers
HTTP/1.1 200 OK
Server: nginx/1.18.0 (Ubuntu)
Date: Tue, 02 Feb 2021 19:03:21 GMT
Content-Type: text/html
Content-Length: 1024
Last-Modified: Tue, 02 Feb 2021 19:02:58 GMT
Connection: keep-alive
ETag: "6019a1e2-400"
Accept-Ranges: bytes

In the second to last line you will find the ETag header, which contains a unique

identifier for this particular revision of the requested file. If you execute the
previous curl command repeatedly, you will find the exact same ETag value.

When using a web browser, the ETag value is stored and sent back to the server with

the If-None-Match request header when the browser wants to request the same file

again — for example, when refreshing the page.

We can simulate this on the command line with the following command. Make sure
you change the ETag value in this command to match the ETag value in your

previous output:

curl -I -H 'If-None-Match: "6019a1e2-400"' http://localhost/test.html

The response will now be different:

Output: Nginx response headers
HTTP/1.1 304 Not Modified
Server: nginx/1.18.0 (Ubuntu)
Date: Tue, 02 Feb 2021 19:04:09 GMT
Last-Modified: Tue, 02 Feb 2021 19:02:58 GMT
Connection: keep-alive
ETag: "6019a1e2-400"

This time, Nginx will respond with 304 Not Modified. It won’t send the file over the
network again; instead, it will tell the browser that it can reuse the file it already has
downloaded locally.

This is useful because it reduces network traffic, but it’s not good enough to achieve
good caching performance. The problem with ETag is that browsers always send a

request to the server asking if it can reuse its cached file. Even though the server
responds with a 304 instead of sending the file again, it still takes time to make the
request and receive the response.

In the next step, we will use the headers module to append caching control
information. This will make the browser cache some files locally without explicitly
asking the server if its fine to do so.

Configuring Cache-Control and Expires Headers

In addition to the ETag file validation header, there are two caching control response

headers: Cache-Control and Expires. Cache-Control is the newer version, with more

options than Expires and is generally more useful if you want finer control over your caching

behavior.

If these headers are set, they can tell the browser that the requested file can be kept locally for a

certain amount of time (including forever) without requesting it again. If the headers are not set,

browsers will always request the file from the server, expecting either 200 OK or 304 Not

Modified responses.

We can use the header module to set these HTTP headers. The header module is a core Nginx

module, which means it doesn’t need to be installed separately to be used.

To add the header module, open the default Nginx configuration file in nano or your favorite text

editor:

sudo nano /etc/nginx/sites-available/default

Find the server configuration block:

. . .
Default server configuration

server {
 listen 80 default_server;
 listen [::]:80 default_server;

. . .

Add the following two new sections here: one before the server block, to define how long to cache

different file types, and one inside it, to set the caching headers appropriately:

. . .
Default server configuration

Expires map
map $sent_http_content_type $expires {
 default off;
 text/html epoch;

 text/css max;
 text/xml max;
 image/gif max;
 image/jpeg max;
 application/javascript max;
 image/avif max;
 image/png max;
 image/svg+xml max;
 image/tiff max;
 image/vnd.wap.wbmp max;
 image/webp max;
 image/x-icon max;
 image/x-jng max;
 image/x-ms-bmp max;
 font/woff max;
 font/woff2 max;
 application/pdf max;
 application/zip max;
 audio/midi max;
 audio/mpeg max;
 audio/ogg max;
 audio/x-m4a max;
 audio/x-realaudio max;
 video/3gpp max;
 video/mp2t max;
 video/mp4 max;
 video/mpeg max;
 video/quicktime max;
 video/webm max;
 video/x-flv max;
 video/x-m4v max;
 video/x-mng max;
 video/x-ms-asf max;
 video/x-ms-wmv max;
 video/x-msvideo max;
}

server {
 listen 80 default_server;
 listen [::]:80 default_server;

 expires $expires;

The section before the server block is a new map block that defines the mapping between the file

type and how long that kind of file should be cached.

We’re using several different settings in this map:

• The default value is set to off, which will not add any caching control headers. It’s a safe

bet for the content, we have no particular requirements on how the cache should work.

• For text/html, we set the value to epoch. This is a special value that results explicitly in

no caching, which forces the browser to always ask if the website itself is up to date.

• For text/css and application/javascript, which are stylesheets and JavaScript

files, we set the value to max. This means the browser will cache these files for as long as

possible, reducing the number of requests considerably given that there are typically many

of these files.

• The last two settings are for ~image/ and ~font/, which are regular expressions that will

match all file types containing image/ or font/ in their MIME type name

(like image/jpg, image/png or font/woff2). Like stylesheets, both pictures and web

fonts on websites can be safely cached to speed up page-loading times, so we set this

to max as well.

Note: These are just a few examples of the most common MIME types used on websites. You can get

acquainted with the more extensive list of such types on Common MIME types site and add others

to the map that you might find useful in your case.

Inside the server block, the expires directive (a part of the headers module) sets the caching

control headers. It uses the value from the $expires variable set in the map. This way, the

resulting headers will be different depending on the file type.

Save and close the file to exit.

To enable the new configuration, restart Nginx:

sudo systemctl restart nginx

Next, let’s make sure our new configuration works.

Testing Browser Caching
Execute the same request as before for the test HTML file:

curl -I http://localhost/test.html

This time the response will be different. You will see two additional HTTP response headers:

Output
HTTP/1.1 200 OK
Server: nginx/1.18.0 (Ubuntu)
Date: Tue, 02 Feb 2021 19:10:13 GMT
Content-Type: text/html
Content-Length: 1024
Last-Modified: Tue, 02 Feb 2021 19:02:58 GMT
Connection: keep-alive
ETag: "6019a1e2-400"
Expires: Thu, 01 Jan 1970 00:00:01 GMT
Cache-Control: no-cache
Accept-Ranges: bytes

The Expires header shows a date in the past and Cache-Control is set with no-cache, which

tells the browser to always ask the server if there is a newer version of the file (using

the ETag header, like before).

You’ll find a difference in response with the test image file:

curl -I http://localhost/test.jpg

Note the new output:

Output
HTTP/1.1 200 OK
Server: nginx/1.18.0 (Ubuntu)
Date: Tue, 02 Feb 2021 19:10:42 GMT
Content-Type: image/jpeg
Content-Length: 1024
Last-Modified: Tue, 02 Feb 2021 19:03:02 GMT
Connection: keep-alive
ETag: "6019a1e6-400"
Expires: Thu, 31 Dec 2037 23:55:55 GMT
Cache-Control: max-age=315360000
Accept-Ranges: bytes

In this case, Expires shows the date in the distant future, and Cache-Control contains max-

age information, which tells the browser how long it can cache the file in seconds. This tells the

browser to cache the downloaded image for as long as it can, so any subsequent appearances of this

image will use local cache and not send a request to the server at all.

The result should be similar for both test.js and test.css, as both JavaScript and stylesheet

files are set with caching headers too.

This means the cache control headers have been configured properly and your website will benefit

from the performance gain and less server requests due to browser caching. You should customize

the caching settings based on your website’s content, but the defaults in this article are a reasonable

place to start.

Step 11: Nginx Logs:
 nginx logs are stored in:

/var/log/nginx/error.log

Step 12: Enabling Nginx mod_rewrite

Nginx does not support .htaccess files.
So to enable rewrite mode:

replace this line in the configuration file, inside the location block

try_files $uri $uri/ =404;

with this new line:

try_files $uri $uri/ /index.php?$args;

Finally, it will look like this:

location / {

 try_files $uri $uri/ /index.php?$args;

 }

Step 13: Optimize Nginx
Since the Mem is only 512MB, then it is better to optimize Nginx server to avoid 502 bad gateway

error or NGINX: upstream timed out and so on.

for this optimization:

1. will set the pm.max_children = 1 , and this is why I did that :

 Check how much RAM you have to spare (perhaps stop php-fpm to calculate

this) and how much memory a php-fpm process typically takes for your webapp

(look at top or ps) and then set pm.max_children = available RAM / php-fpm

process RAM , otherwise you'll run out of memory.

2. Optimize timeout: This happens because your upstream takes too long to answer

the request and NGINX thinks the upstream already failed in processing the

request, so it responds with an error. Just include and increase

proxy_read_timeout in location config block. Same thing happened to me and I

used 1 hour timeout for an internal app at work:

proxy_read_timeout 3600;

With this, NGINX will wait for an hour (3600s) for its upstream to return

something.

location ~ \.php$ {

 ….

 proxy_read_timeout 3600;

….

 }

or this:

So i have to adjust the fastcgi_read_timeout in my server configuration

 location ~ \.php$ {
 fastcgi_read_timeout 240;
 ...
 }

3. It is recommend to have a look at on this settings as well :

 # keepalive settings

 keepalive_requests 10000;

 keepalive_timeout 6;

inside the file: /etc/nginx/nginx.conf

Step 14: Setup Cloudflare
https://www.youtube.com/watch?v=C5_uK44XSqY

The previous YouTube video will guide you how to:

1. how to install Cloudflare by changing the nameservers (examples of how to do it from

NameCheap & GoDaddy).

2. adjust the most important settings in Cloudflare to ensure your website is optimized for

speed and security.

3. show you a cool WP plugin to control everything from your WordPress dashboard.

4. At the end, show you real user data and how much Cloudflare improved page speed.

Note: this is the page rules:

 Page Rule Cloud Flare:

Your-domain.com/wp-login.php* : security level: high

Your-domain.com/wp-admin* : security level: high - cache level: bypass - disable performance -

disable apps

http://* Your-domain.com/* : always use https - order first

References:
• https://www.digitalocean.com/community/tutorials/how-to-install-mariadb-on-debian-11

• https://computingforgeeks.com/how-to-install-php-on-debian-linux-2/

https://www.youtube.com/watch?v=C5_uK44XSqY
https://www.digitalocean.com/community/tutorials/how-to-install-mariadb-on-debian-11
https://computingforgeeks.com/how-to-install-php-on-debian-linux-2/

• https://www.digitalocean.com/community/tutorials/how-to-secure-nginx-with-let-s-

encrypt-on-debian-11

• https://www.digitalocean.com/community/tutorials/how-to-import-and-export-databases-

in-mysql-or-mariadb

• https://www.digitalocean.com/community/tutorials/how-to-install-linux-nginx-mariadb-

php-lemp-stack-on-debian-10

• https://github.com/nginx/nginx/blob/master/conf/mime.types

• https://www.digitalocean.com/community/tutorials/how-to-implement-browser-caching-

with-nginx-s-header-module-on-ubuntu-20-04

• https://kitcharoenp.github.io/nginx/2021/10/21/upstream-timed-out.html

• https://linuxhint.com/what-is-keepalive-in-nginx/

• https://www.youtube.com/watch?v=C5_uK44XSqY

Powered By:
Mo

https://www.digitalocean.com/community/tutorials/how-to-secure-nginx-with-let-s-encrypt-on-debian-11
https://www.digitalocean.com/community/tutorials/how-to-secure-nginx-with-let-s-encrypt-on-debian-11
https://www.digitalocean.com/community/tutorials/how-to-import-and-export-databases-in-mysql-or-mariadb
https://www.digitalocean.com/community/tutorials/how-to-import-and-export-databases-in-mysql-or-mariadb
https://www.digitalocean.com/community/tutorials/how-to-install-linux-nginx-mariadb-php-lemp-stack-on-debian-10
https://www.digitalocean.com/community/tutorials/how-to-install-linux-nginx-mariadb-php-lemp-stack-on-debian-10
https://github.com/nginx/nginx/blob/master/conf/mime.types
https://www.digitalocean.com/community/tutorials/how-to-implement-browser-caching-with-nginx-s-header-module-on-ubuntu-20-04
https://www.digitalocean.com/community/tutorials/how-to-implement-browser-caching-with-nginx-s-header-module-on-ubuntu-20-04
https://kitcharoenp.github.io/nginx/2021/10/21/upstream-timed-out.html
https://linuxhint.com/what-is-keepalive-in-nginx/
https://www.youtube.com/watch?v=C5_uK44XSqY
https://www.linkedin.com/in/mohammad-alhaj-ali/

